a2 United States Patent

US009213692B2

(10) Patent No.: US 9,213,692 B2

Castillo et al. (45) Date of Patent: *Dec. 15, 2015
(54) SYSTEM AND METHOD FOR THE (52) US.CL
AUTOMATIC VALIDATION OF DIALOG RUN CPC GOG6F 17/28 (2013.01); GO6F 9/44 (2013.01),
TIME SYSTEMS GOG6F 17/2775 (2013.01); GI0L 15/1822
(2013.01); GI10L 15/193 (2013.01); HO4M 3/22
(71) Applicant: AT&T Intellectual Property IL, L.P., (2013.01); HO4M 3/4936 (2013.01)
Atlanta, GA (US) (58) Field of Classification Search
CPC . G10L 15/193; GO6F 17/2775; GO6F 17/271;
(72) Inventors: Cecilia Castillo, Lebanon, NJ (US); GOG6F 9/44; GOOF 9/444
Theodore J. Roycraft, Califon, NJ USPC oo 717/100-167
(US); James M. Wilson, Berkeley See application file for complete search history.
Heights, NJ (US)
(56) References Cited
(73) Assignee: AT&T Intellectual Property IL, L.P.,
Atlanta, GA (US) U.S. PATENT DOCUMENTS
* e : : : : 4,686,623 A * 81987 Wallacecccoceeveenne 717/143
(*) Notice: Subject. to any dlsclalmer,. the term of this 5488.569 A * 11996 Kaplanetal . " 2091208
patent is extended or adjusted under 35 5754760 A * 5/1998 Warficld ... U 714/38.1
U.S.C. 154(b) by 0 days. 6,173,266 B1* 1/2001 Marx etal. .. . 704/270
. 6,219,643 B1* 4/2001 Cohenetal. 704/257
This patent is subject to a terminal dis- 6,243,002 BL* 6/2001 Okitaetal. 715/866
claimer. 6,292,909 B1* 9/2001 Hare 714/40
6,321,198 B1* 11/2001 Hanketal. 704/270
(21) Appl. No.: 14/221,435 6,374,308 B1* 4/2002 Kempfetal. 719/316
6,785,643 B2* 8/2004 Hayoshetal. 704/9
_ 6,823,054 B1* 11/2004 Suhmetal. 379/134
(22) Filed: Mar. 21, 2014 6,961,776 B1* 11/2005 Buckingham et al. 709/229
. L 7,117,158 B2* 10/2006 Weldonetal. 704/270
(65) Prior Publication Data 7,143,042 BL* 11/2006 Sinaietal. ..o 704/270.1
US 2014/0288921 Al Sep. 25, 2014 (Continued)
Primary Examiner — Samuel G Neway
Related U.S. Application Data
(63) Continuation of application No. 10/826,065, filed on 7 ABSTRACT
Apr. 16, 2004, now Pat. No. 8,683,437. A method, system and module for automatically validating
dialogs associated with a spoken dialog service. The method
(51) Int.CL comprises extracting key data from a dialog call detail record
GOGF 17/28 (2006.01) associated with a spoken dialog service, transmitting the key
GOGF 9/44 (2006.01) data as a dialog to a state-based representation (such as a
GIO0L 15/193 (2013.01) finite-state machine) associated with a call-flow for the spo-
GOGF 17/27 (2006.01) ken dialog service and determining whether the dialog asso-
HO04M 3/22 (2006.01) ciated with the key data is a valid dialog for the call-flow.
HO4M 3/493 (2006.01)
GI10L 15/18 (2013.01) 20 Claims, 2 Drawing Sheets

CALL DETAIL RECORD

EXTRACTING KEY DATA FROM A DIALOG |~ 992

/

MACHINE

TRANSMITTING THE EXTRACTED KEY
DATA AS A DIALOG TO A FINITE STATE 204

ASSOCIATED WITH THE KEY
VALID DIALOG

/
DETERMINING WHETHER THE DIALOG

DATA IS A 206

US 9,213,692 B2

Page 2

(56) References Cited 2003/0041314 Al1* 2/2003 Heerenetal. 717/109
2003/0046626 Al* 3/2003 Hand et al. ... 714/738
U.S. PATENT DOCUMENTS 2003/0066051 Al* 4/2003 Karretal. . .. 717/114
2003/0067496 Al* 4/2003 Taskeretal. 345/846
7,177,814 B2* 2/2007 Gongetal.ccoo..... 704/270.1 2003/0217190 Al* 11/2003 Devineetal. 709/318
7,181,386 B2* 2/2007 Mohri et al. ..ocooocrvvr... 704/1 2003/0229855 Al* 12/2003 Gorelov et al. ... 715/513
7184967 BL* 22007 Mital ef al 505/7.26 2005/0080628 Al* 4/2005 Kuperstein ... 704/270.1
1002 * L - y 2005/0228668 Al* 10/2005 Wilson et al. 704/256
HO02187 H * = 42007 Yuckimiuk 704/246 2006/0025997 Al* 2/2006 Lawetal. 704/257

7,302,383 B2* 11/2007 Valles 704/9 % .
. 2006/0147020 Al 7/2006 Castillo et al. . 379/220.01

7,945,903 B1* 5/2011 Castilloetal. 717/140 « .
. 2006/0155526 Al 7/2006 Castillo et al. 704/1
8,381,200 B2* 2/2013 Castillo etal. 717/140 2014/0288921 Al* 9/2014 Castillo etal. «oovecvevrvin, 704/9

8,683,437 B1* 3/2014 Castillo etal. 717/124
2002/0032564 Al* 3/2002 Ehsanietal. 704/235 * cited by examiner

US 9,213,692 B2

Sheet 1 of 2

Dec. 15, 2015

akqpoob™
noA™upyy

0t

U.S. Patent

8Cl 858~ buiyyAup 0zl
sway—Aupw oo} ~ALios 18pJ0 { Lisispo V\w:
I } soh . F<ep \ (=siepio
S }
9cl ¥l
sway~Auow™moy +~~91}
0¢! :
OUTPIDITHPRID <y
das"10}~pjoy $8Y40[0”SUBW—oU nokyuoyy Lo
817 fsuowon V8L suaw }
auop
des o} "Js}upJy m:wcwuﬁ_wmccs JoquInuTwljuod L $$a.ppD~aWpuUADS
J A J » .@/o_
%} wingau & Buiyiofo Joquinu~way) Bojojpa
\ nof~diey™1 | ojs
001 soL Apw ™Moy~ upaq 01 I .@H&

U.S. Patent Dec. 15, 2015 Sheet 2 of 2

FIG. 2

US 9,213,692 B2

EXTRACTING KEY DATA FROM A DIALOG
CALL DETAIL RECORD

~

— 202

Y

TRANSMITTING THE EXTRACTED KEY
DATA AS A DIALOG TO A FINITE STATE
MACHINE

— 204

 J

DETERMINING WHETHER THE DIALOG
ASSOCIATED WITH THE KEY DATA IS A~

— 206

VALID DIALOG

FIG. 3

CONVERTING A CALL FLOW INTO A | 19

CONTEXT FREE GRAMMAR NOTATION.

CONVERTING THE CONTEXT FREE
GRAMMAR NOTATION INTO A
STATE-BASED REPRESENTATION

L

{

GENERATING DIALOGS ASSOCIATED

— 304

WITH THE CALL FLOW BY ANALYZING 306

THE STATE-BASED REPRESENTATION

EXTRACTING KEY DATA FROM A

DIALOG CALL DETAIL RECORD —~ 308
TRANSMITTING THE EXTRACTED KEY
DATA AS A DIALOG TO A FINTE <~ 310

STATE MACHINE

US 9,213,692 B2

1
SYSTEM AND METHOD FOR THE
AUTOMATIC VALIDATION OF DIALOG RUN
TIME SYSTEMS

PRIORITY INFORMATION

The present application is a continuation of U.S. patent
application Ser. No. 10/826,065, filed Apr. 16, 2004, the
contents of which is incorporation herein by reference in its
entirety.

RELATED APPLICATIONS

The present invention is related to U.S. patent application
Ser. No. 10/826,064, filed Apr. 16, 2004, the contents of
which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to spoken dialog systems and
more specifically to a system and method of automatically
validating the run-time behavior of a spoken dialog service
with the call-flow specification.

2. Introduction

A spoken dialog system is typically represented by a call
flow. The call flow is essentially a graph or network, possibly
containing cycles over parts of the network. The incorporated
application above discloses a rooted tree having a root node,
descendent nodes, and leaf nodes. A path from the root node
to a leaf node represents a specific dialog. A call flow can
contain huge (tens of thousands) or even unbounded numbers
of unique dialogs.

Typically, a spoken dialog developer will manually inspect
the call flow to generate dialog test cases and scenarios for
testing the spoken dialog system. This is a time consuming
process and is prone to error. Further, such as process can be
incomplete because not every possible sentence or portion of
a dialog will be tested. As a result, when the spoken dialog
service is deployed, its run-time behavior may not match the
call-flow specification. An expert developer’s time is then
required to test and identify problems with the implementa-
tion of the call-flow to determine where the run-time system
deviates from the call-flow.

The time and expense of correcting run-time errors in a
spoken dialog system may prevent many companies or indi-
viduals from deploying such a system for their business. What
is needed in the art is a system and method of automatically
validating a run-time spoken dialog system to determine and
correct its run-time behavior vis-a-vis the call-flow specifi-
cation.

SUMMARY OF THE INVENTION

Additional features and advantages of the invention will be
set forth in the description which follows, and in part will be
obvious from the description, or may be learned by practice of
the invention. The features and advantages of the invention
may be realized and obtained by means of the instruments and
combinations particularly pointed out in the appended
claims. These and other features of the present invention will
become more fully apparent from the following description
and appended claims, or may be learned by the practice of the
invention as set forth herein.

A method, system and module for automatically validating
dialogs associated with a spoken dialog service. The method
comprises extracting key data from a dialog call detail record

10

20

25

30

35

40

45

50

55

60

65

2

associated with a spoken dialog service, transmitting the key
data as a dialog to a state-based representation (such as a
finite-state machine) associated with a call-flow for the spo-
ken dialog service and determining whether the dialog asso-
ciated with the key data is a valid dialog for the call-flow
specification. Other embodiments include, but are not limited
to, a dialog management check module practicing the steps
set forth herein, a computer-readable medium storing com-
puter-executable instructions to practice the method dis-
closed herein and a spoken dialog service implementation of
the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates an example call-flow for a spoken dialog
system,

FIG. 2 illustrates an embodiment of the present invention;
and

FIG. 3 illustrates a method according to an aspect of the
invention.

DETAILED DESCRIPTION OF THE INVENTION

As introduced above, the present invention relates to a
system and method of automatically testing the run-time
behavior of a spoken dialog service as compared against its
call-flow specification. The system aspect of the invention
comprises a computing device programmed to perform the
steps outlined herein. The specific type or configuration of the
computing device is immaterial to the present invention.

The method aspect of the invention may be practiced by
using any programming language for instructing a computing
device to carry out the steps of the invention. A concept that is
important to understand in spoken dialog services is the call-
flow specification.

FIG. 1 illustrates an example call-flow 100 for a mail order
company. The call-flow 100 illustrates how a phone customer
could accomplish one of four tasks: (1) request a catalog; (2)
buy by item by item number; (3) inquire about clothing; or (4)
request a return. During the course of the conversation with
the customer, the dialog progresses through the call-flow 100
guided by the customer’s utterances and the spoken dialog
system responds to the customer with prompts.

Each state (point) in the call-flow 100 can have one or more
state variables associated with the state. These variables can
have string or numeric values and can be created, tested or
changed as the dialog progresses through the call-flow 100
and the values of these variables can affect the flow.

The shapes of the boxes on the call-flow have special
meanings. The parallelograms refer to a starting state. The
rectangles represent prompts to customers. The diamonds are
state variable boolean tests and the hexagons reflect state
variable manipulation.

Lines with arrows show possible transitions between states
and each arrow is labeled by what is determined to be the
customer’s intent. So, for example, after the starting point

US 9,213,692 B2

3

102, the first prompt is “How may I help you?” 104. In
response, the customer may say “I’d like to order item num-
ber B453 from your catalog”. Other software in the system
determines the customer’s intent from this response. This is
typically determined from a dialog manager module in the
spoken dialog system. In this example, the intent is deter-
mined to be “item_number” and thus this path in the call-flow
100 is followed. The prompt asks the user to confirm the item
number 110 and if the confirmation is affirmative (‘yes™) 112,

4

call-flow but that is not a suitable form for the runtime system
to use and it is not suitable for testing or validating dialogs
associated with run-time verification or system testing.

The present invention addresses the need to simplify and
speed up the process of run-time validation and testing spo-
ken dialog services. FIG. 2 illustrates an example flow dia-
gram of the method.

The method comprises automatically extracts key data
from a dialog’s call detail record (CDR), which is a trace of
the dialog (102). The CDR may include a record of all the

then the prompt asks for a credit card number 114 and the 10 details regarding a particular call such as the prompts issued
number of items 116. In this call-flow, the system increments to the user, the responses back from the user and the system
the number of items on order 118 and determine whether a interpretation of the response. Other non-speech input may be
threshold has been reached 124. If yes, then the system interpreted and included in the CDR as well. The method then
prompts that too many items have been ordered 126. If the s comprises transmitting the extracted key data as a dialogto a
threshold is not reaches, then system asks if the customer finite state machine (104) or to an equivalent mechanism to
would like anything else 120 and if yes, it starts over 128. If the finite-state machine. The finite state machine (FSM) rep-
no, then the prompt says good bye and thank you 122. resents the call-flow and accepts the extracted data. A call-

If'the user at stage 104 asks for clothing, the system asks for flow, while typically represented graphically, represents a
clothing for men or women cloths 132. If the clothing is for 20 series of input and output actions. A sequence of actions can
men, the system states that they have no mens clothing 134. If then be viewed words or a sentence that is valid for the
the response is that cloths for women are desired, then the call-flow. There is a process for converting a call-flow into a
prompt holds for a representative 138. If the user responds at FSM or similar mechanism to be used when practicing the
stage 104 that they want to return an item, the system tells the present invention. Any state-based representation known to
user that they will be transferred to a representative 136. 5 those of skill in the art will be adequate for practicing the

If the user’s utterance indicates a desire for a catalog, the invention.
prompt 106 asks for the customer to say their name and To begin the conversion, a process converts the call-flow
address. Once that is received, the system says “thank you” form to an augmented context free grammar notation. Such
108 and completes the process. sentences can be alternatively represented textually via a

In this manner, the spoken dialog system steps through the 30 Backus-Naur Form (BNF) or grammar. A BNF in turn can be
call-flow. It can be appreciated that there are many variations implemented as a finite state machine or FSM. The BNF is a
of call-flows depending on the type of application. FIG. 1 text language used to specify the grammars of programming
only provides an example for the purpose of illustrating the languages. The following augmented BNF representation of
present invention. The representation of the call-flow in FIG. the call-flow of FIG. 1 was created from a Visio representation
1 is a convenient way for the call-flow designer to view the of the call-flow by a dialog manager designer program.

// dmdesigner

// File: 1lbean.vsd

// Created: 3/24/2003 10:41:12 AM

// Total number of pages: 1

#define WATSON__INSERT__ SILENCE 2

// page Page-1

// Warning: shape orders=orders+1 missing labeled line
// Warning: shape orders=orders+1 missing labeled line
// Error: decision orders>5 must have two branches
<start> = llbean__how__may_ I help_ youlout

(catalog\in say_ name__address\out done\in thank__you\out |
item__number\in confirm_ number\out

(Confirm'\eqyes credit__card__no‘out how__many__items‘\out orders\add1
(sorry__too_many__items\out |
anything else\out
(yes\in <start> |
no\in thank__you_ goodbye'out)) |
Confirm\neyes <start>) |

clothing\in men__or_ womens__clothes\out

(' mens\in no__mens__clothes\out |
womens\in hold__for__repiout) |

returnin transfer_ to_ rep\out) ;

// Rule list errors/warnings:
// Rule map list: rule name, page name, page index, shape index, page refs

I

start, “Page-17, 1, 1, “Page-1,34,Page-1,18,”

// State variable list:

I
I

_null
_ tracelevel

// Warning: state variable Confirm referenced but not defined - see page,shape#

Page-1,0,
/
/

I
I
I

Confirm
orders

// Input function list: name, page ref
catalog Page-1,0,
clothing Page-1,0,
done Page-1,0,

I

item__number Page-1,0,

US 9,213,692 B2

5
-continued

/ mens Page-1,0,
/ 10 Page-1,0,
/ return Page-1,0,
/ womens P age-1,0,
/ yes Page-1,0,
// Output function list: name, page ref
/ anything else Page-1,0,
/ confirm__number Page-1,0,
/ credit__card__no Page-1,0,
/ hold_ for rep Page-1,0,
I how__many__items Page-1,0,
/ llbean__how__may_I_help_ you Page-1,0,
/ men_ or_womens_ clothes Page-1,0,
/ no__mens__clothes Page-1,0,
I say_ name_ address Page-1,0,
/ sorry_too_many_ items Page-1,0,
/ thank__you Page-1,0,
/ thank__you__goodbye Page-1,0,
I transfer_to_ rep Page-1,0,

// Default function list: name, age ref

// Tag function list: function name, page name, page index, shape index
// 3 Warnings

//'1 Errors

//'1 Rule Names

// 0 Tag Functions

// 9 Input Functions

// 13 Output Functions

// 0 Default Functions

// 4 State Variables

The BNF is called augmented because in addition to sim-
ply naming the state transitions, a naming convention is used
to assign additional meanings to the state transitions. A suffix
in the form “\xyz’ is added to the transition name to give that
transition a special meaning.

For example, in the demonstration, the first prompt is
‘llbean_how_may_I_help_youlout’. The “out’ suffix indi-
cates that this is a prompt and the name of the prompt is
‘llbean_how_may_I_help_you’. Similarly,
‘item_number\in’ represents the user intent (or category) to
place an order by item number. Some of the valid suffixes and
meanings are:

a. <PromptName>\out—prompt using <PromptName>,
e.g. hello\out

b. <category>\in—category (or user intent) named <cat-
egory>, e.g. buy\in

¢. <var>\set<value>—set state variable <var> to <value>,
e.g. counter\setO

d. <var>\add<value>—add <value> to state variable
<var>, e.g. counter\add4

e. <var>\eq<value>—is <var> equal to <value>?, e.g.
counter\eq0

f. <var>\ne<value>—is <var> not equal to <value>?, e.g.
counter\ne0

g. etc.

Normally, a BNF network representation consists of a
sequence of terminal and non-terminal elements connected
by binary operations, e.g. “and”, “or”, which guide the path
through the BNF network. A sequence of input tokens causes
the network to be traversed as long as the network accepts
(matches) the list of input tokens with the current terminal.
Eventually, either a terminal state (final state) will be reached
orelse a terminal state won’t be reached because the sequence
of input tokens was not compatible with the BNF network.

In the augmented BNF, the notion of terminals is extended.
Normally, terminals are fixed entities such as “dog”, “cat”,
etc. An aspect of the present invention involves extending the
notion of terminals by first creating a set of classes of termi-
nals. Within each class, different terminals of that class may

30

35

40

45

50

55

60

65

be defined by name. For one example implementation, if
classes are chosen as “in”, “out”, numeric and string opera-
tors, “tag”, “def”, and “func” are defined. The “in” classes are
used to match input tokens and to execute a particular gener-
ated function when that input terminal name is matched by an
input token; “out” classes are used to represent “output”
actions (such as issuing a prompt) when that terminal is
reached; “tag” terminals are executed as the process passes
through them and are generally used to mark progress
through the network typically for logging and tracing.

Operator classes can test or modify the values of state
variables and change the flow based on the operator and the
values it operates on. If a test is ‘true’, the process passes to
the next state; if it is false, the path is blocked.

State variables consist of a set of string or numeric vari-
ables associated with each state in the network. As the process
glides through the network, states that are passed through
inherit the values of the state variables from the previous state
but have their own copy. State variables that are modified by
a downstream state don’t affect state variables that are
upstream in the network.

The “func” terminals cause the named function to be
executed as the process passes through that terminal. That
function may return a value that either blocks passage through
that terminal or permits passage.

Normally, to pass through a terminal, an input token must
match it. In the augmented BNF, the only terminal that must
be matched by an input token is the “in” class token. All others
are simply passed through to the next terminal as long as the
actions performed for that particular terminal permit passage
through it. For those terminals other than the “in” class, as
they are passed through, certain actions are implied based on
the type of class that is passed through. It is also possible for
actions specific to that particular augmented terminal to take
place. Because it is possible that there are multiple valid paths
out of a particular state (the network is nondeterministic), the
process must “look ahead” in the network until it comes to a
blocking state or the process finishes successfully at a final
state. If the process encounters a blocking path, it must back-

US 9,213,692 B2

7

track to the previous state and check the next valid path out of
that state. This is done recursively until it eventually finds a
path that ends up at a valid final state or it is determined that
there is no valid path to the final state.

Since the process must backtrack at times, it keeps the set
of state variables on a stack. As the process moves to a new
state, it makes a copy of all the state variables and pushes the
set of them on the stack. If the process has to backtrack, it pops
the last state off the stack to restore a valid state to the state the
process backtracked to.

When the augmented BNF is implemented as an FSM, it
will accept sentences that are in the grammar defined by the
BNF. The basic process outlined in FIG. 1 can enable auto-
matic validation of individual dialogs generated via a
deployed dialog system and automatic validation of indi-
vidual dialogs generated from a system test of a dialog sys-
tem.

The complement of this process is a method for automati-
cally generating system test cases, disclosed in U.S. patent
application Ser. No. 10/826,064, incorporated herein by ref-
erence. If both the automatic means for generating test dia-
logs and the automatic means for validating dialogs are both
available, then a fully automated system for generating,
executing, and validating dialogs can be created. A fully
automated embodiment of the present invention is illustrated
in FIG. 3.

The process shown in FIG. 3 assumes the availability of a
call-flow in a Visio form or another similar format. The first
step comprises converting a call-flow into a context free
grammar notation (302). Preferably, this is a BNF represen-
tation. The augmented BNF is used to automatically gener-
ating the test dialogs. Another step in the present invention
comprises converting or creating a state-based representation
from the BNF (304). The preferred state-based representation
is a finite state machine although other representations may
be utilized. Next, the process comprises generating dialogs
associated with the call-flow by analyzing the state-based
representation (306). The generated dialogs are then used to
automatically test the spoken dialog system with a more
complete set of sentences and dialogs than could otherwise be
manually generated.

Once the spoken dialog system is deployed, the method of
FIG. 3 further comprises extracting key data from a call detail
record (308). The extracted key data is transmitted as a dialog
to a finite state machine (310) or similar apparatus. From step
(310), the method determines whether the dialog associated
with the key data is a valid dialog. This can occur by deter-
mining whether the FSM has accepted the dialog in that the
FSM will accept sentences that are in the grammar defined by
the BNF.

The process disclosed herein of validating the spoken dia-
log system provides an automatic method of testing a system
using real calls or automated calls to the system. For example,
either during a testing process or after a spoken dialog system
is deployed in the field, this invention can extract data from a
call detail record and determine whether a particular call
pattern, i.e., the system responses and flow of the call, fol-
lowed the established call flow. If the system deviated from
the call flow or took a route not identified in the call flow, then
the system designers know that there is a problem with the
system and corrections can be made.

In atesting phase of deployment of a spoken dialog system,
a dialog manager generation tool, such as that disclosed in
U.S. patent application Ser. No. 10/826,064, incorporated
herein by reference, may be utilized to generate testing dia-
logs. Having applied the testing dialogs to the spoken dialog

10

25

40

45

8

system, the present invention identifies whether the system
response and call flow is consistent with the programmed call
flow.

The process makes novel use of the fact that a call flow can
be represented by an equivalent BNF (a context free grammar
notation) that in turn can be converted into a finite state
machine (FSM). The FSM representation permits algorithms
developed and applied that “walk” the FSM from the root to
a leaf of the FSM. Each such traversal of the FSM represents
a valid path through the call-flow and can be automatically
mapped to specific points in the call-flow. Hence, each path
through the FSM can generate a test dialog or scenario.

Any system that can be represented by a graphical call flow
(or BNF or FSM) and needs to generate unique paths (e.g., for
testing or analysis) through the flow can benefit from this
process. This applies to human-machine, human-human, and
machine-machine interactions.

Embodiments within the scope of the present invention
may also include computer-readable media for carrying or
having computer-executable instructions or data structures
stored thereon. Such computer-readable media can be any
available media that can be accessed by a general purpose or
special purpose computer. By way of example, and not limi-
tation, such computer-readable media can comprise RAM,
ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to carry or store desired
program code means in the form of computer-executable
instructions or data structures. When information is trans-
ferred or provided over a network or another communications
connection (either hardwired, wireless, or combination
thereof) to a computer, the computer properly views the con-
nection as a computer-readable medium. Thus, any such con-
nection is properly termed a computer-readable medium.
Combinations of the above should also be included within the
scope of the computer-readable media.

Computer-executable instructions include, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
Computer-executable instructions also include program
modules that are executed by computers in stand-alone or
network environments. Generally, program modules include
routines, programs, objects, components, and data structures,
etc. that perform particular tasks or implement particular
abstract data types. Computer-executable instructions, asso-
ciated data structures, and program modules represent
examples of the program code means for executing steps of
the methods disclosed herein. The particular sequence of such
executable instructions or associated data structures repre-
sents examples of corresponding acts for implementing the
functions described in such steps.

Those of skill in the art will appreciate that other embodi-
ments of the invention may be practiced in network comput-
ing environments with many types of computer system con-
figurations, including personal computers, hand-held
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini-
computers, mainframe computers, and the like. Embodi-
ments may also be practiced in distributed computing envi-
ronments where tasks are performed by local and remote
processing devices that are linked (either by hardwired links,
wireless links, or by a combination thereof) through a com-
munications network. In a distributed computing environ-
ment, program modules may be located in both local and
remote memory storage devices.

US 9,213,692 B2

9

Although the above description may contain specific
details, they should not be construed as limiting the claims in
any way. Other configurations of the described embodiments
of the invention are part of the scope of this invention. For
example, the invention is not limited to generating BNF’s or
FSM’s in the process of automatically generating test dialog
sentences and automatic validation of dialogs in either a
run-time test or system test if a spoken dialog system. No
specific programming language is required for programming
the automated process. Accordingly, the appended claims and
their legal equivalents should only define the invention, rather
than any specific examples given.

We claim:

1. A method comprising:

inputting key data to a finite state-based representation,

wherein the key data is extracted from a dialog call detail
record associated with a run-time behavior of a dialog
between a spoken dialog service and a user, wherein the
dialog call detail record traces and records turns in the
dialog during a call by the user; and

determining, via a processor and during the call, whether

the finite state-based representation has accepted the key
data based on whether the finite-based representation
accepts a sentence from the dialog in a grammar,
wherein the grammar is defined by a Backus-Naur Form
implemented as the finite state-based representation.

2. The method of claim 1, wherein the call detail record
comprises a prompt issued to a user and a response from the
user.

3. The method of claim 2, wherein the call detail record
further comprises an interpretation of the response.

4. The method of claim 1, wherein the Backus-Naur Form
comprises a sequence of terminal elements and non-terminal
elements.

5. The method of claim 4, wherein only an “in class”
terminal element requires a matching class token.

6. The method of claim 1, further comprising when the
finite state-based representation has accepted the key data,
generating dialogs to automatically test the finite state-based
representation.

7. The method of claim 6, further comprising performing
further testing of the finite state-based representation using
stored real-call records.

8. A system comprising:

a processor; and

a computer-readable storage medium having instructions

stored which, when executed by the processor, cause the

processor to perform operations comprising:

inputting key data to a finite state-based representation,
wherein the key data is extracted from a dialog call
detail record associated with a run-time behavior of a
dialog between a spoken dialog service and a user,
wherein the dialog call detail record traces and
records turns in the dialog during a call by the user;
and

determining, via the processor and during the call,
whether the finite state-based representation has
accepted the key data based on whether the finite-
based representation accepts a sentence from the dia-

10

15

20

25

30

35

40

45

50

55

10

log in a grammar, wherein the grammar is defined by
a Backus-Naur Form implemented as the finite state-
based representation.

9. The system of claim 8, wherein the call detail record
comprises a prompt issued to a user and a response from the
user.

10. The system of claim 9, wherein the call detail record
further comprises an interpretation of the response.

11. The system of claim 8, wherein the Backus-Naur Form
comprises a sequence of terminal elements and non-terminal
elements.

12. The system of claim 11, wherein only an “in class”
terminal element requires a matching class token.

13. The system of claim 8, the computer-readable storage
medium having additional instructions stored which result in
operations comprising when the finite state-based represen-
tation has accepted the key data, generating dialogs to auto-
matically test the finite state-based representation.

14. The system of claim 13, the computer-readable storage
medium having additional instructions stored which result in
operations comprising performing further testing of the finite
state-based representation using stored real-call records.

15. A computer-readable storage device having instruc-
tions stored which, when executed by a computing device,
cause the computing device to perform operations compris-
ing:

inputting key data to a finite state-based representation,

wherein the key data is extracted from a dialog call detail
record associated with a run-time behavior of a dialog
between a spoken dialog service and a user, wherein the
dialog call detail record traces and records turns in the
dialog during a call by the user; and

determining, via the computing device and during the call,

whether the finite state-based representation has
accepted the key data based on whether the finite-based
representation accepts a sentence from the dialog in a
grammar, wherein the grammar is defined by a Backus-
Naur Form implemented as the finite state-based repre-
sentation.

16. The computer-readable storage device of claim 15,
wherein the call detail record comprises a prompt issued to a
user and a response from the user.

17. The computer-readable storage device of claim 16,
wherein the call detail record further comprises an interpre-
tation of the response.

18. The computer-readable storage device of claim 15,
wherein the Backus-Naur Form comprises a sequence of
terminal elements and non-terminal elements.

19. The computer-readable storage device of claim 18,
wherein only an “in class” terminal element requires a match-
ing class token.

20. The computer-readable storage device of claim 15, the
computer-readable storage medium having additional
instructions stored which result in operations comprising
when the finite state-based representation has accepted the
key data, generating dialogs to automatically test the finite
state-based representation.

#* #* #* #* #*

